
Terascale Data Organization for Discovering Multivariate
Climatic Trends

Wesley Kendall, Markus Glatter, and
Jian Huang

Department of Electrical Engineering and
Computer Science

The University of Tennessee, Knoxville
Knoxville, TN 37996

{kendall, glatter, huangj}@eecs.utk.edu

Tom Peterka, Robert Latham, and
Robert Ross

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
{tpeterka, robl, rross}@mcs.anl.gov

ABSTRACT
Current visualization tools lack the ability to perform full-
range spatial and temporal analysis on terascale scientific
datasets. Two key reasons exist for this shortcoming: I/O
and postprocessing on these datasets are being performed
in suboptimal manners, and the subsequent data extraction
and analysis routines have not been studied in depth at large
scales. We resolved these issues through advanced I/O tech-
niques and improvements to current query-driven visualiza-
tion methods. We show the efficiency of our approach by
analyzing over a terabyte of multivariate satellite data and
addressing two key issues in climate science: time-lag anal-
ysis and drought assessment. Our methods allowed us to
reduce the end-to-end execution times on these problems to
one minute on a Cray XT4 machine.

Keywords
Query-Driven Visualization, Parallel I/O, Temporal Data
Analysis, MODIS

1. INTRODUCTION
To understand the underlying structures and relationships
of variables in datasets through space and time, it is often
necessary to analyze and visualize the full spatial and tem-
poral extent of the dataset. The need for scalable methods
to perform such full-range analysis tasks is growing as sci-
entific simulations produce datasets ranging to the terascale
and beyond. This need is particularly acute as visualization
applications, especially those that handle large-scale time-
varying data, are increasingly being dominated by I/O over-
heads to a degree that impedes their practical use.

As an example of the challenge that I/O presents in visu-
alization, [1] has shown that rendering a single timestep of
a 20483 volume can be optimized to take only a few sec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.

SC09 November 14-20, 2009, Portland, Oregon, USA
(c) 2009 ACM 978-1-60558-744-8/09/11. . . $10.00

onds on an IBM Blue Gene/P, however, reading that volume
from disk takes at least a minute. Efficient I/O solutions are
needed if one wishes to perform more complex visualization
and analysis tasks that involve many timesteps to be loaded
at once. In order for visualization to make a greater impact
on terascale computational science, I/O cannot be treated
in isolation.

In this work, we developed a system that closely integrated
techniques in parallel I/O with concepts from parallel query-
driven visualization. Our contributions include: first, to al-
leviate I/O bottlenecks in full-range analysis through ad-
vanced methods of performing I/O on common scientific
data storage formats; second, to scale parallel extraction
of salient spatial and temporal regions in scientific datasets
by improving current parallel data querying techniques; and
third, to assess multivariate relationships in terascale obser-
vational data by using our techniques to alleviate computing
and I/O overheads.

The scalability of our system enabled us to explore over a
terabyte of multivariate satellite data from NASA’s Mod-
erate Resolution Imaging Spectroradiometer (MODIS) [2]
project. The amount of data and the desired combinatorial
way of exploring for conceptual events, such as prolonged
periods of drought and event relationships, required using
computing resources at large scale.

With scalability up to 16K cores, our full-range studies on
≈1.1 TB of MODIS were optimized to take around one
minute. This time includes all stages of the pipeline, from
the initial I/O operations to the resulting visualization. The
ability to perform these complex analysis tasks at large scales
on datasets directly from simulations provides a flexibility
that is not offered by current visualization tools. The follow-
ing discusses our work in reducing the end-to-end latency of
these complex analyses.

Figure 1: An overview of our system.

2. OVERVIEW AND RELATED WORK
Our work primarily spans the fields of parallel I/O, feature
tracking, and parallel query-driven visualization. Little re-
search exists that systematically combines these areas, and
each area is crucial for our driving application. Before dis-
cussing the relevant related work, we present a synopsis of
the driving application and our system, along with a de-
scription of the Cray XT4 machine we used.

2.1 The Driving Application
Our driving application is to study observational data in
NASA’s MODIS database to discover multivariate climatic
trends. The dataset used in our study consists of a 500 meter
resolution sampling of North and South America, creating
a 31,200 by 21,600 grid. The dataset is continuously up-
dated, and we used 417 timesteps of 8 day intervals from
February 2000 to February 2009. MODIS data is stored
in various wavelength bands which may be used to compute
other variables. By computing two variables that are related
to our studies in Section 5 and storing them as short inte-
gers, the entire dataset totals to ≈1.1 TB. With a dataset
of this magnitude, we have two primary goals: to provide
visualization and analysis methods for cases when many of
the timesteps of the dataset need to be loaded, and to de-
liver usability and near-interactive functionality specifically
for application scientists.

The visualization aspect of this task is very demanding for
several reasons. First, extracting isocontours with an inher-
ent temporal component is rather new in the field. Drought,
for instance, is not a single timestep event and requires “ab-
normally low rainfall” to have lasted for a period of time. Al-
though tracking contours over time has already been solved
[3], visualization typically still treats contour extraction stat-
ically in the spatial domain [4]. We instead seek for spatial
locations in a contour that fit two criteria: thresholds for
scalar variables, and the number of continuous timesteps

that meet the first criteria. Advanced data structures are
necessary to allow for such high dimensional searches. Un-
fortunately, the most likely methods and data structures,
particularly those used in query-driven visualization, incur
preprocessing overheads on the order of several hours for
datasets of 100 GB [5, 6, 7].

Second, current data analysis tools are not efficiently inte-
grated with system level tools such as parallel I/O. This
causes a severe bottleneck in efforts to shorten the end-to-
end latency as outlined by the vision of in situ analysis and
visualization [8]. In addition, few current data analysis tools
have the scalability to leverage modern systems, such as the
Cray XT4 and the IBM Blue Gene/P. Not being able to fully
leverage systems of that caliber, especially the next genera-
tion storage and parallel I/O systems, imposes yet another
bottleneck in obtaining the full potential of data analysis
tools in production scientific use.

Third, typical user work flow includes an often neglected but
very expensive component. That is, to get the datasets from
an application-native format into a format that is the most
amenable to the parallel data analysis or visualization. To
minimize the end-to-end latency, this step must be studied
in depth. In this work, we specifically focused on one of the
most common cases of our collaborators, where individual
timesteps are initially stored in separate netCDF files.

Figure 1 illustrates the overall architecture of our data anal-
ysis system. When data is produced, it is stored in an
application-native format and striped across the parallel file
system for higher access bandwidth. Our system reads and
distributes data in parallel to prepare it into a queriable
form with maximal runtime load balance. The relevant data
is then queried and spatial or temporal analysis may occur
by sorting the data in the proper ordering.

The system provides a means for analysis to take place
on datasets immediately after being written to disk, and
it also reduces computing overheads by using query-driven
concepts to access only the data deemed relevant. By using
these concepts, problems of full-range analysis and visualiza-
tion on terascale datasets can be solved in feasible amounts
of time. In the following, we further discuss our targeted
infrastructure and the previous works that have influenced
our design decisions.

2.2 Targeted Infrastructure
In our study, we used the Jaguar Cray XT4 machine located
at Oak Ridge National Laboratory as a testing ground for
our methods. Jaguar consists of 7,832 quad-core 2.1 GHz
AMD Opteron processors with 8 GB of memory. The sys-
tem totals to 31,328 cores with 62 TB of main memory.
The parallel file system on Jaguar is the Lustre file sys-
tem [9]. Lustre is an object-based parallel file system, con-
sisting of Object Storage Servers (OSSs) that handle I/O
requests from the clients to the actual storage. Each OSS
serves one or more Object Storage Targets (OSTs), which
are the physical disks. Lustre uses one Metadata Server
(MDS) that holds the file information for the entire system.
Jaguar’s Lustre file system contains 72 OSSs that serve 144
OSTs.

2.3 In Situ Processing and Visualization
Ma et al. [8] described the various bottlenecks present in
popular methods of large data processing and visualization.
The authors emphasized the importance of being able to
couple visualization and analysis into the simulation pipeline.
This allows for reduction of data and valuable analysis dur-
ing the simulation that can further accelerate the scientific
discovery process.

The authors further discussed various postprocessing steps
that are common in the visualization and analysis pipeline.
With in situ visualization, many of these steps can be re-
duced or even taken out. Although we do not couple our
code directly with simulation code, we provide a means to in-
teract with data written directly from the simulation, along
with conducting postprocessing on the fly.

2.4 Parallel I/O
Significant algorithmic advances have improved the usabil-
ity and portability of parallel I/O across high-performance
systems, and user-friendly interfaces have been developed to
aid in achieving higher I/O bandwidths. I/O interfaces built
on top of the MPI-2 [10] standard, such as ROMIO [11], have
shown various optimizations that can be applied to the I/O
phase for various parallel data access patterns. Collective
I/O and data sieving are such examples [11]. We used opti-
mizations such as collective I/O as a means to achieve better
bandwidth rates in our I/O phase.

I/O has recently been gaining more attention in visualiza-
tion research. Ma et al. [12] first showed how overlapping
I/O with rendering could significantly reduce interframe de-
lay in the parallel rendering of large-scale earthquake simu-
lations. Yu et al. [13] extended this by presenting I/O solu-
tions for a parallel visualization pipeline. Yu et al. [14] also
presented two parallel I/O methods for the visualization of

time-varying volume data in a high-performance computing
environment.

Peterka et al. [1] have recently performed extensive work on
large-scale parallel volume rendering of astrophysics data on
the IBM Blue Gene/P. Their method of visualization focused
on efficiently using parallel I/O to increase frame rates. By
using a system like the Blue Gene/P, the authors showed
that a simulation-caliber resource is a valuable alternative
to a graphics cluster for visualization, especially when I/O
is the bottleneck.

Although our primary systems need is to efficiently read data
from storage and organize it in memory, we are aware of sys-
tematic efforts underway to address challenges of outputting
data by scientific simulations at the petascale. One effort in
that regard is the Adaptive I/O System (ADIOS) [15], which
provides input and output performance gains and a flexibil-
ity of runtime choices of different I/O methods and data
formats. Systems like ADIOS can treat visualization as just
another I/O method, enabling in situ visualization.

2.5 Feature Extraction and Tracking
One of the most widespread uses of feature detection in visu-
alization is to extract isocontours from scalar fields. Isocon-
tour extraction can be explicit or implicit. Volume rendering
methods [21] implicitly extract isocontours by using transfer
functions to assign non-zero opacity only to a few selected
continuous narrow ranges of scalar values. The marching
cube algorithm [4] explicitly constructs the geometry that
corresponds to one single scalar value or a continuous range
of scalar values.

Silver et al. first tracked explicitly extracted features over
time [3]. By finding spatial overlaps between features from
neighboring timesteps, their methods discovered the evolu-
tionary history of contours. Tzeng and Ma [22] were the
first to demonstrate that features evolve not only spatially
but also in value space over time. In other words, the values
that define the contours of a feature do not remain con-
stant across all timesteps. Thus, features cannot be reli-
ably tracked without considering the variations in the val-
ues of the isocontours. We know of no previous research that
has considered directly extracting contours with an inherent
temporal element, such as the drought problem discussed in
Section 5.

2.6 Query-Driven Visualization
Query-driven visualization [5, 16, 17, 6, 7] has recently be-
come a popular research topic. Query-driven methods are
related to feature extraction in several of ways. First, query-
driven methods rely on translating a user interest into a com-
pound Boolean range query. In doing so, it offers a natural
extension of feature extraction capabilities in multivariate
data. Second, regardless of the underlying methods, such as
a distributed M-ary search tree [5], bitmap indexing [7] or
bin-hashing [6], query-driven visualization has been shown
to accelerate contour extraction in large datasets. The meth-
ods for query-driven visualization can be split into two cat-
egories: tree-based and index-based methods.

In indexed-based methods [18, 7, 19], bitmap indexing is
used to accelerate the search phase. To build the index,

each record r with v distinct attribute values generates v
bitmaps with r values each. This allows for bitwise logical
operations to be performed on range queries, making mul-
tivariate range queries simple linear combinations of single-
valued queries [7]. In tree-based methods, data is sorted and
indexed with tree structures such as B-trees or M-ary search
tree structures [5].

It has been shown that tree-based methods suffer from the
“Curse of Dimensionality”, where adding more dimensions
results in an exponential growth in storage and process-
ing requirements [7]. Although this is true for a naive tree
method, Glatter et al. [5] showed how an M-ary search tree
structure could be used to reduce the storage overhead to
less than 1% of the dataset size and also showed that the
overhead is not dependent on the dataset size. This factor
is attractive to our method of querying since we load the
data in main memory. It was also shown in [5] that queries
could be load balanced by distributing data on the granu-
larity of single voxels. Although parallel methods of index-
based query-driven visualization have been established [18,
19], these do not focus on the issue of load balanced data ex-
traction. Since load balancing is crucial to the performance
of our system, we used [5] as the background for our parallel
querying model.

2.7 Parallel Sorting
We used parallel sorting for applying two of our load bal-
ancing schemes discussed in Section 4, and for performing
parallel temporal analysis discussed in Section 5. Because
of the results in the seminal work by Blelloch et al. [20], we
chose to use the parallel sample sort algorithm.

The parallel sample sort algorithm randomly samples the
dataset choosing samples in such a way to linearly split the
entire dataset. The processes then bin their data based on
the splitter samples and sort their bins, creating a glob-
ally sorted list. Parallel sorting is an inherently network-
intensive process, and this algorithm sums up all of its net-
work communication in one MPI Alltoall call to bin the
dataset. To locally sort the bins, we used the quick sort
algorithm.

3. THE I/O COMPONENT
Visualization applications are often dominated by I/O time
when working with terascale datasets, and this can be exac-
erbated with simplistic methods such as pushing the entire
I/O request through one node [23]. We used an advanced
method for performing I/O on application-native formats to
reduce I/O costs and allow for analysis with no postprocess-
ing step.

3.1 Design Considerations
It is common for our collaborators to use the netCDF [24]
format to store their data, so we used the Parallel netCDF
library [25] as a layer for our disk access. This library is
built on top of MPI-2 [10], allowing it to execute on a wide
variety of high-performance architectures independent of the
parallel file system that is installed.

Another common storage method for our collaborators is to
store a separate file for each timestep or variable. Thus,

it is necessary to have an algorithm that performs I/O on
multiple files in an efficient manner. The research that most
closely resembles our work is by Memik et al. in [26], where
they examine reducing I/O and data transfer times in col-
lective methods to multiple files. They showed this problem
was NP-complete when the files were arbitrary sizes and pro-
vided various solutions to the problem. In our system, the
assignment of data to processes is irrelevant, and we only
require that all the data be loaded in memory after the I/O
step. Because of this, the step of minimization of transfer-
ring data to the correct process shown in [26] was not needed,
and we were able to create a more general algorithm.

It was shown in [26] that a greedy heuristic could be used
when assigning processes to files. We used a similar ap-
proach and applied a greedy heuristic that maximizes the
amount of complete files that can be read at one time. We
used this heuristic because it allows us to perform large col-
lective reads on the files and efficiently use collective I/O
strategies implemented in ROMIO [11]. Collective I/O is
useful primarily for three reasons. First, it was shown in [27]
that parallel opening of shared files is much more effective
on large amounts of OSTs. Second, collective I/O can re-
sult in larger reads that result in higher bandwidths. Third,
we can tune the size of the collective I/O buffer for better
bandwidths. We used a buffer size of 32 MB because of the
results obtained in [27].

3.2 Greedy I/O on Multiple Files
Our approach for performing I/O on multiple files is not
limited by the number of processes or the number of files.
The routine proceeds in the following steps:

1. A configuration file is read with information about the
dataset. This information includes the directory where
data is stored, the variables of interest, restrictions or
subsampling rates on the dimensions of the variables,
and the ranges of variables that are unimportant.

2. Each file is assigned round robin to the N processes.
The files are opened by the respective processes, and
the metadata about the all the variables is gathered.
The total size of the dataset D is computed, and each
process must read in approximately Q amount of data
where Q = D

N . Each process P contains DP amount
of data that has been read in, with DP starting at 0.

3. The first process P that has DP < Q reserves the
largest chunk possible of the first file F that has not
yet been fully read in. If sizeof(F) ≤ Q−DP , P will
be able to reserve all of the data available to read in F .
If sizeof(F) > Q−DP , P will reserve Q−DP amount
of data from F . This will continue on the remaining
processes where DP < Q until all of F is reserved or
until no more processes are available.

4. Once a group of processes has been assigned to a file,
an MPI communicator is created for the group and col-
lective parallel I/O is performed on the variables. For
each process P that performed I/O, DP is incremented
by the amount of data read in.

5. If DP < Q, process P repeats steps 3 and 4 with the
remaining files in subsequent stages. This continues
until all processes have read in Q amount of data.

Figure 2: Example of the greedy I/O algorithm with
four processes and three files.

The greedy approach is best shown by a simple example in
Figure 2. This example conducts the algorithm on three files
while using four processes. In stage S0, P0 and P2 are able
to read in their respective Q amount of data. P1 and P3

are not able to do this, so they continue to the next stage
S1. In this stage, they read in F2 and finish reading in their
respective Q amount of data.

The main limitation of this algorithm is the amount of data
that can be loaded in the aggregate memory of the nodes.
Two strategies are provided to address this issue. First,
users are able to specify ranges of variables that are irrel-
evant to their analysis in the dataset configuration. Since
the algorithm executes in stages, these values are discarded
in between stages, thus using memory more efficiently. Sec-
ond, subsampling rates or restrictions may be specified in
the dataset configuration and applied to the dimensions, en-
abling a reduced version of the dataset to be read in.

3.3 Results and Comparisons
We tested the bandwidth rates for this algorithm on varying
scales with the MODIS dataset. If the aggregate memory
of the nodes was insufficient, data was discarded after being
read in for bandwidth testing purposes. It is difficult to com-
pare the bandwidth rates of our algorithm with benchmark
results on the Jaguar machine because netCDF benchmarks
do not exist for this machine. Therefore, we compare our
results with the IOR benchmark [28] results obtained in [27]
as a comparison for how our algorithm performs at large
scales.

The IOR benchmark provides the ability to test aggregate
I/O rates with MPI collective I/O calls on various file ac-
cess modes and access patterns. In [27], the authors used
the IOR benchmark on Jaguar to show how the bandwidth
scales when using varying amounts of OSTs to read in data.
We use the bandwidth results obtained from using 144 OSTs
in [27] as a comparison since we also used 144 OSTs. Two
benchmarks from [27] using 1K cores showed bandwidth
rates of ≈42 GB/s when reading in one shared file and ≈36

!

"#!!!

$!#!!!

$"#!!!

%!#!!!

%"#!!!

&!#!!!

$' &% '($%) %"' "$% $* %* (*)* $'*

!
"
#$

%&'($

)#*+",-./0.12+3(451

Figure 3: I/O bandwidth results for the greedy al-
gorithm on the MODIS dataset.

GB/s when reading in one file per process. Other bench-
marks were conducted that used greater than 1K cores, but
the amount of OSTs used was not explicitly stated and the
bandwidth rates were less than those of the IOR benchmark.

Bandwidth results of our algorithm are shown in Figure 3.
When timing the results, the files were first opened and then
timing was started after an MPI Barrier. After all the I/O
was complete, another MPI Barrier was called and timing
stopped. We achieved up to ≈28 GB/s on 4K cores, roughly
75% of the 42 GB/s benchmark comparison. The bandwidth
bottomed out around 2K cores, and performance degrada-
tion was seen when scaling to 8K and 16K cores. This same
trend was observed in [27] on a separate benchmark. We hy-
pothesize that the MDS is being overwhelmed with requests
when going to this scale, but further testing is required to
confirm this.

When scaling to 4K cores, we were able to minimize the I/O
time on the entire 1.1 TB MODIS dataset to ≈37 seconds.
The results show that using collective I/O combined with a
greedy approach to saturate the underlying I/O system with
requests can achieve significant bandwidth rates, and data in
application-native formats can be read in a practical amount
of time for an application setting. Because we can access
datasets stored in these application-native formats, common
postprocessing steps taken in large data visualization [8] can
be taken out of the analysis pipeline, saving valuable time
and allowing for prototyping and analysis immediately after
the simulation is complete.

4. SCALABLE DATA EXTRACTION
Because of the low storage overhead and load balanced data
extraction capabilities discussed in Section 2.6, we chose to
use the work by Glatter et al. [5] as a basis for our query-
driven data extraction. However, the methods in [5] were
only scaled up to 40 servers, studied only one approach of
load balancing, and used a server-client method that was in-
herently bottlenecked by one client collecting queried data
over a network. The following discusses our methods to ex-
tend these concepts on large systems and to further improve
the scalability and timing of our query-driven data extrac-
tion.

4.1 Our Query-Driven Model
Instead of using a server-client concept that returns data
over a network from many servers to one client as in [5], we
modeled our query-driven system as a set of independent
processes issuing the same query on local data and accumu-
lating the result in memory.

For fastest querying rates, it would be ideal to have equal
amounts of returned data on every process for all the queries
issued. Although it is impossible to know which queries will
be issued, it has been shown that distributing the data in
a spatially preserving manner across all the processes re-
sults in near-optimal load balance regardless of the query [5].
However, distributing data in [5] involved costly compu-
tation of Hilbert indices while doing a sort of the entire
dataset.

It is then a question of trade-off between the overhead to
distribute data after I/O versus the overhead of a large num-
ber of runtime queries. To find a practical optimum in this
trade-off, we studied the design in [5] plus four alternative
designs, each incurring contrasting overheads of distribution
and runtime querying. The starting point of all designs is
the same: each node has read in contiguous segments of data
from disparate netCDF files. In the following, we describe
the load balancing schemes. We refer to a data point being
distributed as an item, which is the multivariate tuple on
each (x, y, t) location in the MODIS dataset.

Hilbert-Order: The original design in [5]. The items
are globally sorted by their computed indices along the
Hilbert space-filling curve, and then distributed by a
round robin assignment to all processes.

Z-Order: The same as Hilbert-Order, except comput-
ing indices along the Z space-filling curve.

Round Robin: Each item is distributed by a round
robin assignment to all processes.

Random: The items are randomly shuffled locally and
then divided into N chunks, where N is the number
of processes. Each process P will then gather the P th

chunk from each process. This entire method is per-
formed twice.

None: No data distribution.

4.2 Load Balancing Tests and Results
We tested these load balancing schemes to arrive at quanti-
tative conclusions on which ones are best for given applica-
tions. We assessed these techniques based on two criteria:

!

!"

!""

#$% $!# !& #& '&

!
"#
$
%&
'
$
(
)
*
+
'
,

-).$'

/"'0."120")*%34$.5$6+

()*+,-()./+

(0+,)1

2/3.456785,45

9785,45

Figure 4: The overhead times for the load balancing
schemes. Time is shown on logarithmic scale.

the cost associated with distributing the data, and the av-
erage time spent querying.

The cost of distributing the data is simply the distribution
time. The average time spent issuing a query is calculated by
taking the maximum query time of the individual processes,
and then averaging it over all the queries. Doing this pro-
vides a measurement of how load imbalance in the searching
phase will affect the overall parallel querying rates.

We tested the load balancing schemes by performing two
separate tests that issued 1,000 randomly generated queries,
each with the same random seed. The first test randomly re-
stricted the time and spatial dimensions, and the second test
randomly restricted the variable ranges. These tests used a
≈100 GB subset of the MODIS dataset of 40 timesteps, and
the final results were averaged. The items returned from
the individual queries ranged from 0.001% to 20% of the
dataset.

The first experiment calculated the overhead times of dis-
tributing the data for the load balancing schemes. The
Hilbert-Order and the Z-Order schemes required a parallel
sort of the dataset, and the parallel sample sorting algorithm
discussed in Section 2.7 is used to do this. The timing re-
sults are shown in Figure 4. The Hilbert-Order and Z-Order
schemes scaled linearly. The Random and Round Robin
schemes almost scaled linearly, but it is not expected for
them to have scaled perfectly since they are already under
one second at 4K cores. The Hilbert-Order scheme incurred
the most overhead because of the time involved in comput-
ing and sorting the Hilbert indices. The Z-Order indices
were easier to compute, thus the scheme had a smaller over-
head than the Hilbert-Order scheme. The Round Robin and
Random distributions were almost a factor of 10 faster at all
scales when compared to the distributions that require sort-
ing.

To further assess if these distribution costs are outweighed
by the benefits of faster querying, we computed the average
time per query. The results, displayed in Figure 5, showed us

!"#

#

$%& %#$ #' $' ('

!
"#
$
%&
'
$
(
)
*
+
'
,

-).$'

/0$.12$%!"#$%3$.%45$.6

)*+,-.)*/0,

)1,-*2

304/567896-56

:896-56

;*,5

Figure 5: The average time per query for the load
balancing schemes. Time is shown on logarithmic
scale.

that the Hilbert-Order scheme is never the optimal scheme
to use, because the overhead time was always the slowest and
the resulting querying times were never the fastest at any
scale. In all of the cases, the Z-Order distribution gave the
fastest query times, and the Random distribution followed
closely.

From these results, we concluded that the Random scheme
is the best to use for general applications that will not be
issuing queries on the order of the thousands. The Z-Order
scheme showed the fastest querying rates, but the cost asso-
ciated with the distribution will only be outweighed by the
querying times when very many queries are issued. Even
though the Round Robin scheme showed a very small over-
head, the resulting time spent querying was costly as the
number of queries increased. We believe this is because the
Round Robin scheme is highly dependent on the layout of
data in memory after the I/O step. As a comparison, ap-
plying no load balancing scheme to the dataset resulted in
noticeably poorer querying rates.

Although randomness is not guaranteed to preserve spatial
locality as mentioned in [5], the costs of distributing the
data along with the resulting performance outweighed the
Hilbert-Order scheme that was used in [5]. We chose to use
the Random scheme for our analysis in Section 5 because of
the significantly small overhead and fast querying rates.

5. MULTIVARIATE CLIMATIC TRENDS
We used our system to discover climatic trends in two vari-
ables from the MODIS dataset. Our approach has specific
motivations in climate science, but can be applied to a broad
variety of application areas. The two problems we addressed
in climate science are drought assessment and time-lag anal-
ysis.

5.1 Variables
The two variables we used are computed from the satellite
bands of the MODIS dataset. The first variable is the Nor-
malize Difference Vegetation Index (NDVI). This variable is

computed with the red band (RED) and the near infrared
band (NIR) with the following equation:

NDV I =
RED −NIR
RED + NIR

(1)

NDVI measures the changes in chlorophyll content by the
absorption of the visible red band and in spongy mesophyll
by the reflected near infrared band. Higher NDVI values
usually represent the greenness of the vegetation canopy [29].

The other variable we computed is the Normalized Differ-
ence Water Index (NDWI). This variable is computed us-
ing the red band (RED) and the short wave infrared band
(SWIR) with the following equation:

NDWI =
RED − SWIR
RED + SWIR

(2)

NDWI is a more recent satellite derived index that reflects
changes in water content by the short wave infrared band [30].

5.2 Drought Assessment
Drought is one of the most complicated and least under-
stood of all natural hazards, and much research has gone
into using satellite derived data as a means for drought as-
sessment. NDVI and NDWI together have been used to
monitor drought in several different studies [29, 31, 32]. In
particular, NDVI and NDWI were combined in [29] to form
a Normalized Difference Drought Index (NDDI) variable.
NDDI is computed as:

NDDI =
NDV I −NDWI
NDV I + NDWI

(3)

It was shown in [29] that NDDI is a more sensitive indica-
tor of drought, especially during the summer months in the
Central United States. In [29], they used NDVI and NDWI
values to find drought in the Central Great Plains of the
United States and then used the NDDI value to assess the
severity of the drought. We used a similar approach and
applied this concept to the entire dataset. By doing this,
it is possible to determine if NDDI along with NDWI and
NDVI is an acceptable measure for drought. It is important
to assess these variables to better understand their useful-
ness in drought monitoring and prediction. Based on these
variables, we used five criteria to find periods of drought:

NDWI thresh: To be considered as a location where
drought is occurring, the location must have NDWI
below this threshold.

NDV I thresh: Similarly, it must have NDVI below
this threshold to be considered as a location where
drought is occurring.

NDDI range: If the NDDI value is in this range, it
is marked as a location of drought. A higher NDDI
range indicates more severe drought.

Figure 6: Drought analysis of NDVI < 0.5, NDWI < 0.3, and NDDI between 0.5 and 10.0. These are periods
of drought that lasted for at least a month and occurred up to two years for any given region. Several regions
are marked where drought has happened, most notably the 2006 Mexico drought. The image was colored
based on the year that the longest drought occurred.

Cores Read Write Filter Distribution Query Sort Analysis Total Time
1K 85.23 0.68 47.11 22.40 1.01 14.17 0.22 170.82
2K 48.62 0.30 24.49 14.19 0.71 11.31 0.21 99.83
4K 41.27 0.31 11.80 8.78 0.34 9.18 0.10 71.78
8K 48.78 0.32 6.30 5.60 0.16 6.50 0.08 67.74

16K 46.56 0.30 3.45 3.02 0.08 4.20 0.07 57.68

Table 1: Timing results (in seconds) of the drought application.

min time span: A location marked as a drought must
occur for at least this time span within a year to be
considered as an extended period of drought.

max years: If the location meets all the restrictions
above, but happens more than a given number of years,
that area is discarded as it is considered normal for it
to have the other restrictions.

The first three criteria define the multivariate contour in
value space. The fourth criterion defines the expanded tem-
poral dimension for the event. This added dimension causes
a much increased amount of complexity. The last criterion is
a minor component. Its sole purpose is to filter out regions
composed of barren lands, where analyzing drought is not
as meaningful.

By using these criteria, we extracted the periods of extended
severe or moderate drought. We used our system to query
below NDWI thresh and below NDVI thresh on the growing
season of the Northern Hemisphere (May - October) and
the growing season of the Southern Hemisphere (Novem-

ber - April). After accumulating the queried data over the
growing seasons of all the years, a parallel sort was per-
formed in spatial and temporal ordering. We then calcu-
lated the time span and number of years that the restriction
on NDDI range occurred for each spatial point by stepping
through the data on each process. If min time span and
max years was met, the point was colored based on the year
that the longest drought occurred. The final image was writ-
ten in parallel.

We tested our analysis by iteratively stepping through var-
ious thresholds of NDVI and NDWI and various ranges of
NDDI. Figure 6 shows the resulting visualization from set-
ting NDVI thresh = 0.5, NDWI thresh = 0.3, NDDI range
= 0.5 – 10.0, min time span = 0.3, and max years = 2.
In [29], the same values for NDWI and NDVI were used
to assess drought. The results show various regions where
drought was a real-world problem, most notably an abnor-
mal drought in Mexico during 2006. This is one of the exam-
ples of how using analysis like this could help find acceptable
parameters to use in drought monitoring tools.

Figure 8: Time-lag between the first occurrence of 0.7 < NDWI < 0.9 and the first occurrence of 0.4 < NDVI
< 0.6 in 2006. The color represents the length of the time-lag. Calculating this allowed us to assess the
duration from the first snow to the beginning of vegetation green-up.

Cores Read Write Filter Distribution Query Sort Analysis Total Time
1K 80.63 1.96 47.90 24.20 6.11 26.21 0.25 187.26
2K 51.54 2.03 22.22 18.90 3.01 20.25 0.15 118.10
4K 45.48 2.05 12.60 12.56 1.64 15.30 0.08 89.71
8K 47.43 2.04 7.00 7.14 0.90 8.90 0.05 73.46

16K 46.34 2.06 3.65 5.02 0.51 4.80 0.05 62.43

Table 2: Timing results (in seconds) of the time-lag application.

5.3 Time-Lag Analysis
Along with drought assessment, another widely studied prob-
lem in climate science is the time-lag among variable changes.
Studying time-lag is important for obtaining better under-
standings of how variables like NDVI are affected by other
conditions. In particular to the drought assessment problem,
studying past and present droughts in relation to these con-
ditions could enhance the capability to monitor vegetation
and develop better early warning systems [33].

We defined the problem of time-lag in the following man-
ner: calculate the time between the first or last occurrence
of variable v0 in range r0 and the first or last occurrence of
variable v1 in range r1. We specifically focused on the prob-
lem of time-lag between the first snow fall and the first sign
of green-up from vegetation. Figure 7 shows averaged NDVI
and NDWI variables from a region in Saskatchewan Canada
to illustrate our problem. NDWI shows abnormally high
values when snowfall occurred, and NDVI shows abnormally
low values. By calculating the time between when NDWI
reached these abnormally high values and when NDVI first
broke out of the low values, the time between first snow fall

and beginning of vegetation green-up can be computed.

To solve this, we first queried on ranges r0 and r1 for v0 and
v1 for each year. After querying, the appropriate data was
sorted in parallel in spatial and temporal ordering. Each
process then computed the time-lag between the first occur-
rence of v0 and the first occurrence of v1 in their respective
ranges. The resulting image was then colored based on the
time-lag and written in parallel.

Figure 8 shows the resulting visualization for 0.7 < NDWI <
0.9 and 0.4 < NDVI < 0.6. The time between the first snow
fall and vegetation green-up for various regions in Northern
Canada was almost an entire year. Smaller time-lags around
the Central and Southeastern United States were found, nor-
mally ranging from about one to two months between the
first snow fall and the beginning of vegetation green-up.

!

!"#

!"$

!"%

!"&

'

! #! $! %! &! '!!

!"#$%&$'

!"#$()*+,-.,/"0%&,12-3.*44,*25,6$+$&*&"-2,70$$2(8'

()*+
(),+

##-.
/0
123142

#'-./0
123142

Figure 7: Averaged NDVI and NDWI variables from
a region in Saskatchewan Canada. Circled points
show the first occurrence of NDWI in the 0.7 – 0.9
range and NDVI in the 0.4 – 0.6 range.

5.4 Application Timing Results
Timing results were gathered from the two separate applica-
tions. Detailed results of the drought application are shown
in Table 1, and results from the time-lag application are
shown in Table 2.

In the drought application, queries were issued on the grow-
ing seasons of the Northern and Southern Hemispheres for
all growing seasons, resulting in 18 total queries. One paral-
lel sort was issued before analysis, and one final image was
written. In Table 1, the aggregate time of all 18 queries is
shown, along with timing for the other aspects of the appli-
cation. With the parameters used to generate Figure 6, ≈11
billion relevant items were returned from the queries and
sorted before analysis. At 16K cores, the application aggre-
gately queried ≈137.5 billion items per second and sorted
≈2.6 billion items per second.

Similarly for the time-lag application, queries were issued for
each year on the Northern and Southern Hemispheres with
the beginning of each year starting in the Fall. For each
year and hemisphere, a query was issued on the appropriate
range of NDVI and another was issued on the appropriate
range of NDWI to calculate time-lag. Thus, four queries
were issued each year. Since we were interested in time-lag
on a yearly basis, we gathered the results separately for each
year, resulting in 10 sorts being performed before analysis
and 10 files being written.

The results in Table 2 show the aggregate times for the
querying, sorting, and writing, along with the times for the
other parts of the application. With the parameters used to
generate Figure 8, ≈1.2 billion relevant items were returned,
sorted, and analyzed for each year. Since we did this on all
10 years, ≈12 billion relevant items were returned, sorted,
and analyzed for the total application. At 16K cores, the ap-
plication aggregately queried ≈23.5 billion items per second
and sorted ≈2.5 billion items per second.

Similar scaling results were observed in the applications.
When scaling to 4K cores, I/O bandwidth reached≈25 GB/s
but then tapered off. This is because it was shown in [27]
that using too many processes to perform I/O will often
cause bandwidth degradation. It is beyond the scope of our
work right now to address this issue in our reading phase,
however, we did gather the final image to a smaller amount
of processes in the writing phase. This is why the writing
time remained near constant as process counts were scaled.

The aspects of the applications other than I/O showed scal-
ability to 16K cores. The time for filtering the useless points
in the dataset turned out to be a significant portion of the
application, and more work will be needed to enable faster
filtering of useless values. The analysis times were almost
negligible. When scaling to 16K cores, both applications
showed an end-to-end execution time of nearly one minute.

6. CONCLUSIONS AND FUTURE WORK
In this work we have shown the feasibility of performing so-
phisticated, full-range analysis of terascale datasets directly
from application-native netCDF data. The end-to-end time
for these analyses can be optimized to about a minute, which
is acceptable to many scientific users. We have also sys-
tematically evaluated a few common design alternatives in
parallel reading of data as well as data distribution schemes
for load balancing. We found a greedily-driven assignment
of file reads to be a practical trade-off between complexity
of I/O methods and achievable bandwidth. We have also
found that, for terascale datasets handled by thousands of
cores, random distribution, while simplistic, actually demon-
strated a trade-off advantage in user-perceived performance.

With this system and the small amount of time needed to
perform queries, it is our future plan to study problems that
will require many more queries to be issued. One example
is a sensitivity-based study to determine which parameters
are best for performing drought assessment, instead of giving
static restrictions to the system. In addition, we also plan on
extending our system to handle out-of-core datasets because
future growth of data will likely continue to outpace the
increases in system memory and processing bandwidth.

7. ACKNOWLEDGMENTS
Funding for this work is primarily through the Institute of
Ultra-Scale Visualization (http://www.ultravis.org) un-
der the auspices of the SciDAC program within the U.S.
Department of Energy (DOE). Important components of the
overall system were developed while supported in part by a
DOE Early Career PI grant awarded to Jian Huang (No. DE-
FG02-04ER25610) and by NSF grants CNS-0437508 and
ACI-0329323. The MODIS dataset was provided by NASA
(http://modis.gsfc.nasa.gov). This research used resources
of the National Center for Computational Science (NCCS)
at Oak Ridge National Laboratory (ORNL), which is man-
aged by UT-Battelle, LLC, for DOE under Contract No.
DE-AC05-00OR22725.

8. REFERENCES
[1] T. Peterka, H. Yu, R. Ross, and K.-L. Ma, “Parallel

volume rendering on the IBM Blue Gene/P,” in
EGPGV ‘08: Proceedings of the Eurographics
Symposium on Parallel Graphics and Visualization,
April 2008, pp. 73–80.

[2] “MODIS,” http://modis.gsfc.nasa.gov.
[3] D. Silver and X. Wang, “Tracking and visualizing

turbulent 3d features,” IEEE Transactions on
Visualization and Computer Graphics, vol. 3, no. 2,
pp. 129–141, 1997.

[4] W. E. Lorensen and H. E. Cline, “Marching cubes: A
high resolution 3d surface construction algorithm,” in
Proceedings of ACM SIGGRAPH, 1987, pp. 163–169.

[5] M. Glatter, C. Mollenhour, J. Huang, and J. Gao,
“Scalable data servers for large multivariate volume
visualization,” IEEE Transactions on Visualization
and Computer Graphics, vol. 12, no. 5, pp. 1291–1298,
2006.

[6] L. Gosink, J. C. Anderson, E. W. Bethel, and K. I.
Joy, “Query-driven visualization of time-varying
adaptive mesh refinement data,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14,
no. 6, 2008.

[7] K. Stockinger, J. Shalf, K. Wu, and E. Bethel,
“Query-driven visualization of large data sets,” in VIS
‘05: Proceedings of the IEEE Visualization
Conference, October 2005, pp. 167–174.

[8] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova, “In situ
processing and visualization for ultrascale
simulations,” Journal of Physics, vol. 78, June 2007,
(Proceedings of the SciDAC 2007 Conference).

[9] “Lustre,” http://www.lustre.org.
[10] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,

B. Nitzberg, W. Saphir, and M. Snir, MPI-The
Complete Reference: Volume 2 - The MPI Extensions.
Cambridge, MA, USA: MIT Press, 1998.

[11] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and
collective I/O in ROMIO,” in Proceedings of the 7th
Symposium on the Frontiers of Massively Parallel
Computation, 1999, pp. 182–189.

[12] K.-L. Ma, A. Stompel, J. Bielak, O. Ghattas, and
E. J. Kim, “Visualizing large-scale earthquake
simulations,” in SC ‘03: Proceedings of the
ACM/IEEE Supercomputing Conference, 2003.

[13] H. Yu, K.-L. Ma, and J. Welling, “A parallel
visualization pipeline for terascale earthquake
simulations,” in SC ‘04: Proceedings of the
ACM/IEEE Supercomputing Conference, November
2004.

[14] H. Yu, K.-L. Ma, and J. Welling, “I/O strategies for
parallel rendering of large time-varying volume data,”
in EGPGV ‘04: Proceedings of the Eurographics
Symposium on Parallel Graphics and Visualization,
June 2004, pp. 31–40.

[15] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan,
“Adaptable, metadata rich IO methods for portable
high performance IO,” in IPDPS ‘09: Proceedings of
the IEEE International Symposium on Parallel and
Distributed Processing, 2009.

[16] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu,
“Visualizing temporal patterns in large multivariate

data using textual pattern matching,” IEEE
Transactions on Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1467–1474, 2008.

[17] L. Gosink, J. Anderson, W. Bethel, and K. Joy,
“Variable interactions in query-driven visualization,”
IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1400–1407, 2007.

[18] K. Stockinger, E. W. Bethel, S. Campbell, E. Dart,
and K. Wu, “Detecting distributed scans using
high-performance query-driven visualization,” in SC
‘06: Proceedings of the ACM/IEEE Supercomputing
Conference, October 2006.

[19] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith,
C. G. R. Geddes, E. Cormier-Michel, S. Ahern, G. H.
Weber, P. Messmer, H. Hagen, B. Hamann, and E. W.
Bethel, “High performance multivariate visual data
exploration for extremely large data,” in SC ‘08:
Proceedings of the ACM/IEEE Supercomputing
Conference, November 2008.

[20] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G.
Plaxton, S. Smith, and M. Zagha, “An experimental
analysis of parallel sorting algorithms,” Theory of
Computing Systems, vol. 31, no. 2, pp. 135–167, 1998.

[21] M. Meissner, J. Huang, D. Bartz, K. Mueller, and
R. Crawfis, “A practical evaluation of the four most
popular volume rendering algorithms,” in Proceedings
of the IEEE/ACM Symposium on Volume
Visualization, October 2000.

[22] F.-Y. Tzeng and K.-L. Ma, “Intelligent feature
extraction and tracking for visualizing large-scale 4d
flow simulations,” in SC ‘05: Proceedings of the
ACM/IEEE Supercomputing Conference, November
2005.

[23] R. Ross, T. Peterka, H.-W. Shen, K.-L. Ma, H. Yu,
and K. Moreland, “Visualization and parallel I/O at
extreme scale,” Journal of Physics, vol. 125, July 2008,
(Proceedings of the SciDAC 2008 Conference).

[24] R. Rew and G. Davis, “NetCDF: An interface for
scientific data access,” IEEE Computer Graphics and
Applications, vol. 10, no. 4, pp. 76–82, 1990.

[25] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale, “Parallel netCDF: A high-performance
scientific I/O interface,” in SC ‘03: Proceedings of the
ACM/IEEE Supercomputing Conference, 2003.

[26] G. Memik, M. T. Kandemir, W.-K. Liao, and
A. Choudhary, “Multicollective I/O: A technique for
exploiting inter-file access patterns,” ACM
Transactions on Storage, vol. 2, no. 3, pp. 349–369,
2006.

[27] W. Yu, J. S. Vetter, and S. Oral, “Performance
characterization and optimization of parallel I/O on
the Cray XT,” in IPDPS ‘08: Proceedings of the IEEE
International Symposium on Parallel and Distributed
Processing, 2008, pp. 1–11.

[28] “IOR,”
http://www.cs.sandia.gov/Scalable IO/ior.html.

[29] Y. Gu, J. F. Brown, J. P. Verdin, and B. Wardlow, “A
five-year analysis of MODIS NDVI and NDWI for
grassland drought assessment over the Central Great
Plains of the United States,” Geophysical Research
Letters, vol. 34, 2007.

[30] B. Gao, “NDWI – A normalized difference water index
for remote sensing of vegetation liquid water from
space,” Remote Sensing of Environment, vol. 58, no. 3,
pp. 257–266, December 1996.

[31] L. Wang, J. Qu, and X. Xiong, “A seven year analysis
of water related indices for Georgia drought
assessment over the 2007 wildfire regions,” IEEE
International Geoscience and Remote Sensing
Symposium, 2008.

[32] C. Liu and J. Wu, “Crop drought monitoring using
MODIS NDDI over mid-territory of China,” IEEE
International Geoscience and Remote Sensing
Symposium, 2008.

[33] T. Tadessee, B. D. Wardlow, and J. H. Ryu,
“Identifying time-lag relationships between vegetation
condition and climate to produce vegetation outlook
maps and monitor drought,” 22nd Conference on
Hydrology, 2008.

